The effects of double-pyramid resistance and pyramid speed training on some physiological adaptations of young elite football players

  • Mohammad Mohammadi Department of Physical Education, Faculty of Literature and Humanities, Malayer University, Malayer, Iran.
  • Azadeh Naderi Master of Sport Physiology, Iran.
  • Farah Asadi Master of Sport Physiology, Iran.
Keywords: Resistance training, Hypertrophy, Sprint variables, Young elite football players

Abstract

This study aimed to investigate the effects of the double-pyramid resistance training (DPRT) and the pyramid speed training (PST) on some physiological adaptations of Young elite football players. 30 football players (age 18.31 ± 2.5 years; height 177.2±4.6 cm; weight 74.25 Kg and BF% 14.60±5.03) were randomly divided into three groups of DPRT (n=10), PST (n=10) and control (n=10). The subjects trained for 40 minutes, 3 sessions a week, 8 weeks using two exercise patterns. After assurance the normal data distribution (Kolmogorov-Smirnov test), MANCOVA test and sidak post-hoc test showed significant improvement in body weight, BMI, body fat mass, muscular strength of the lower body, peak power and, average power for DPRT compare to PST and control groups (p≤0.05). On the other hand, the PST group was found to have significantly better results in 30 meters running record, 400 meters running time and, sprint drop compared to the DPRT and control groups (p≤0.05).  Muscular endurance and flexibility make more improvements by DPRT and PST compare to control group (p≤0.05). In conclusion, it seems that both training models were suitable for increasing Physiological variables, although the DPRT probably improves the muscular strength and hypertrophy, while PST can be more effective in improvement of the sprint variables of Young elite football players.

References

-Barnett, C.; Carey, M.; Proietto, J.; Cerin, E.; Febbraio, M.; Jenkins, D. Muscle metabolism during sprint exercise in man: influence of sprint training. Journal of science and medicine in sport. Vol. 7. Núm. 3. p.314-22. 2004.

-Behm, D.G. Types of stretching and the effects on flexibility. The Science and Physiology of Flexibility and Stretching: Routledge. p. 14-47. 2018.

-Blanchard, P.N. Effective Training, Systems, Strategies, and Practices. Pearson Education India. 2006.

-Bompa, T.; Buzzichelli, C. Periodization Training for Sports. Human kinetics. 2015.

-Bosquet, L.; Berryman, N.; Dupuy, O.; Mekary, S.; Arvisais, D.; Bherer, L. Effect of training cessation on muscular performance: A meta‐analysis. Scandinavian journal of medicine & science in sports. Vol. 23. Núm. 3. P.e140-e9. 2013.

-Brozek, J.; Grande, F.; Anderson, J.T.; Keys, A. Densitometric analysis of body composition: revision of some quantitative assumptions. Annals of the New York Academy of Sciences. Vol. 110. Núm. 1. p.113-40. 1963

-Canavan, P.K.; Vescovi, J.D. Evaluation of power prediction equations: peak vertical jumping power in women. Medicine & Science in Sports & Exercise. Vol. 36. Núm. 9. p.1589-93. 2004.

-Cometti, G.; Maffiuletti, M.; Pousson, J.C.; Chatard, M.; Maffulli, N. Isokinetic strength and anaerobic power of elite, sub elite and amateur French soccer players, Int. J. Sports. Med. Vol. 22. Núm. 1. p. 45-5. 2001.

-Drozd, M.; Krzysztofik, M.; Nawrocka, M.; Krawczyk, M.; Kotuła, K.; Langer, A. Analysis of the 30-m running speed test results in soccer players in third soccer leagues. Turkish Journal of Kinesiology. Vol. 3. Núm. 1. p.1-5. 2017.

-Fashi, M. A k. The response of blood buffering capacity and H+ regulation to three types of recovery during repeated high-intensity endurance training. Research in Sport Medicine and Technology. Vol. 9. Núm. 2. p. 27-40. 2011.

-Fernandez, J.; Zimek, R.; Wiewelhove, T.; Ferrauti, A. High-intensity interval training vs. repeated-sprint training in tennis. The Journal of Strength & Conditioning Research. Vol. 26. Núm. 1. p.53-62. 2012.

-Gettman, L.R.; Ayres, J.J.; Pollock, M.L.; Jackson, A. The effect of circuit weight training on strength, cardiorespiratory function, and body composition of adult men. Medicine and science in sports. Vol. 10. Núm. 3. p.171-6. 1978.

-Han, S.; Lee, H.; Kim, H.; Kim, D.; Choi, C.; Park, J. A 6-week sprint interval training program changes anaerobic power, quadriceps moment, and subcutaneous tissue thickness. International journal of sports medicine. Vol. 38. Núm. 2. p. 105-10. 2017.

-Hoseini, F.; Mohebbi, H.; Rahmani, N.F.; Damirchi, A. Comparison between flat and double pyramid resistance training protocols on physical fitness and anthropometric measures in elite young soccer players. JME. Vol. 2. Núm. 1. p.73-89. 2012.

-Koral, J.; Oranchuk, D.J.; Herrera, R.; Millet, GY. Six sessions of sprint interval training improves running performance in trained athletes. Journal of strength and conditioning research. Vol. 32. Núm. 3. p.617. 2018.

-Maclnnis, M.J.; Skelly, L.E.; Godkin, F.E.; Martin, B.J.; Tripp, T.R.; Tarnopolsky, M.A. Effect of short-term, high-intensity exercise training on human skeletal muscle citrate synthase maximal activity: single versus multiple bouts per session. Applied Physiology, Nutrition, and Metabolism. Vol. 44. Núm. 12. p.1391-4. 2019.

-McCarthy, J.J. Effects of a wrestling periodization strength program on muscular strength, absolute endurance, and relative endurance. California State University. Fullerton. 1991.

-Mohammadi, M.; Kazemi, A.; Sazvar, A.; Rahimi, G.H.; Khademi, A.R.; Monazaf, S. Evaluation of physical and physiological profiles of Iranian male elite soccer players. Journal of Advances in Environmental Biology. Vol. 7. Núm. 2. p. 373-383. 2013.

-Mohammadi, M.; Siavoshy, H.; Rahimi, S.G.H. Comparison of the effect of two selected resistance training patterns on some physical and physiological factors of elite freestyle wrestler young boys. National Journal of Physiology, Pharmacy and Pharmacology. Vol. 8. Núm. 2. p.278-84. 2018.

-Nelson, R.T.; Bandy, W.D. An update on flexibility. Strength and conditioning jornal. Vol. 27. Núm. 1. p.10. 2005.

-Nevill, M.E.; Boobis, L.H.; Brooks, S.; Williams, C. Effect of training on muscle metabolism during treadmill sprinting. Journal of applied physiology. Vol. 67. Núm. 6. p.2376-82. 1989.

-Nezami, S.; Samavati Sharif, M.A.; Chezani Sharahi, A. The Comparison of the Effects of Two Types of Resistance Training on Triceps Brachial Thickness and its Connection with Maximum Strength in Novice Bodybuilders. Journal of Sport Biosciences. Vol. 8. Núm. 2. p. 207-19. 2016.

-Pollock, M.L.; Gaesser, G.; Butcher, J.D.; Després, J.P.; Dishman, R.K.; Franklin, B.A. The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness, and flexibility in healthy adults. Medicine and Science in Sports and Exercise. Vol. 30. Núm. 6. p.975-91. 1998.

-Rahro, Z. S.; Siahkuhian, M.; Barghamadi, M.; Azizian Kohan, N. Examining effect of six weeks resistance training with three loading patterns, pyramid, reverse pyramid and double pyramid on some of physiological abilities in female volleyball players: university of Mohaghegh Ardabili. 2016.

-Rodas, G.; Ventura, J.L.; Cadefau, J.A.; Cussó, R.; Parra, J. A short training programme for the rapid improvement of both aerobic and anaerobic metabolism. European journal of applied physiology. Vol. 82. Núm. 5-6. p.480-6. 2000.

-Schoenfeld, B.J. The mechanisms of muscle hypertrophy and their application to resistance training. The Journal of Strength & Conditioning Research. Vol. 24. Núm. 10. p.2857-72. 2010.

-Silva, A.S.R.; Santnigo, M.; Papoti Gobatto, C.A. Psychological, biochemical and Physiological responses of Brazilian Soccer players during a training Program, J. Sci. Sports. Vol. 23. p.66-72. 2008.

-Slater, G.; Mitchell, L. Strength and power athletes. First published in 2019 Copyright© Regina Belski, Adrienne Forsyth & Evangeline Mantzioris 2019 Copyright in individual chapters remains with the authors All rights reserved No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval. 38. 2019.

-Sokmen, B.; Witchey, R.L.; Adams, G.M.; Beam, W.C. Effects of sprint interval training with active recovery vs. endurance training on aerobic and anaerobic power, muscular strength, and sprint ability. The Journal of Strength & Conditioning Research. Vol. 32. Núm. 3. p.624-31. 2018.

-Wilson, G.J.; Newton, R.U.; Murphy, A.J.; Humphries, B.J. (1993). The optimal training load for the development of dynamic athletic performance. Medicine and science in sports and exercise. Vol. 25. Núm. 11. p.1279-86. 1993.

Published
2021-11-07
How to Cite
Mohammadi, M., Naderi, A., & Asadi, F. (2021). The effects of double-pyramid resistance and pyramid speed training on some physiological adaptations of young elite football players. RBFF - Brazilian Journal of Futsal and Football, 13(53), 266-274. Retrieved from https://www.rbff.com.br/index.php/rbff/article/view/1109
Section
Scientific Articles - Original